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Quasicrystals (QCs) exhibit high long-range order but lack
translational periodicity, not even the underlying lattice of an
incommensurate structure.1 After their debut in 1984,2 QCs aroused
extensive interest among scientists from divergent fields. Prospec-
tive applications of these novelties as hydrogen storage, catalytic,
thermoelectric, and biomaterials, and as surface coatings have been
widely studied over the past two decades.3 However, there are still
no definite guidelines for the discovery of new QC systems.
Fortunately, most QCs have normal crystalline matessapproximants
(ACs)swith structures and compositions that are presumed to be
close to those of corresponding QCs. Three types have been
classified in terms of the cluster-based building blocks in the
assumed ACs, the Mackay- and the Bergman-types1 plus the newer
symmetry-breaking (Tsai) type.4 They are generally recognized as
electron phases that may be described by Hume-Rothery rules with
sharply restricted ranges of valence electron concentrations (VEC)
per atom (e/a),5 approximately 1.75 for the Mackay-type, about
2.1-2.2 for the Bergman-type,5 and close to 2.0 for the Tsai-type.4

Likewise, they appear to have pseudogaps in the densities-of-states
(DOS) near the Fermi energy (EF),6 consistent with their generally
poor electronic conductivities. With these aspects in mind, we have
discovered both QC and AC phases in the Sc3CuxZn18-x system.7

The discovery has been enabled by the nominal cubic parent
structure, ScZn6,8 which has a similar composition to the binary
Ca15Cd85 QC and is isostructural with its AC CaCd6.4 Meanwhile,
related QCs of Sc15M10Zn75 (M ) Ag, Au, Pd, Pt)9 and Sc15Mg3-
Cu48Ga34

10 have also been found in the same system. This naturally
raises questions as to how to judge whether a new or known
structure is a good candidate for QC tuning or not. To this purpose,
we have been investigating new systems starting from somewhat
more distant structures, utilizing the concept that pseudogaps in
the DOS are general features of QC and, evidently, ACs as well,
and this paper describes a major advance in this effort.

We noted that thee/a values that favor icosahedral QCs partially
overlap those for intermetallics containing a main group metal, a
late transition metal, and a heavy triel element (Ga, In, Tl).11 Our
interest was particularly aroused by the structure and bonding
evolution of Mg2Zn11-type compounds from K6Na15Tl18M (M )
Mg, Zn, Cd, Hg) through Na2Au6In5 and Mg2Cu6Al5 to Mg2Zn11.12

The bonding character within these undergoes a dramatic evolution
from predominantly ionic in K6Na15Tl18M through heteronuclear
covalent to mainly homonuclear covalent in Mg2Zn11, a direction
that seems to be clearly necessary and consistent with the formation
of quasicrystalline phases. Alternatively, these structures may be
described as a primitive cubic packing of endohedral clusters, for
example, as Al@Cu12@Al8Mg12@Al12 in Mg2Cu6Al5, which geo-
metrically also resembles an incomplete Bergman-type cluster. We
have recently synthesized and structurally established Mg2Cu6Ga5

as a new member of the Mg2Zn11 family.13 Moreover, EHTB
calculations on it show both a pseudogap in the densities-of-states

(DOS) and empty bonding states according to the crystal-orbital-
overlap-population (COOP) data just aboveEF (e/a ) 1.92). Four
more electrons per cell would accordingly fill all bonding states
and shift theEF to the pseudogap (e/a ∼ 2.03). The phase was
therefore considered as a candidate for electronic tuning to a QC
phase, assuming that a rigid band may still apply with a structure
change.

Our first tuning that modified the Cu/Ga ratio as Mg2Cu6-xGa5+x

to add 4 e-/cell resulted in the synthesis of Mg35Cu24Ga53,14 a novel
Laves-like phase that contains interpenetrating Bergman clusters.
However, its fcc symmetry did not seem to afford a likely route to
icosahedral symmetry according to the group-subgroup theorem.15

In this paper, we report success of the alternative means: replace-
ment some of Mg in Mg2Cu6Ga5 by Sc, which yields both the
desired bcc AC and QC phases.

Exploratory reactions of Scx/3Mg2-x/3Cu6Ga5 (x ) 3, 4, 5) aimed
at optimizing the bonding as above were reacted as before.14 Sc
was selected because it has one more valence electron than and a
similar metallic radius16 to Mg. The XRD pattern (Supporting
Information) for thex ) 5 sample showed 85-90% of a phase
very similar to the bcc Sc(CuZn)6.7 Quench treatments did not
decrease the crystalline quality. Structure determination17 showed
that this phase is isostructural with ScZn6,7 Im3h, a ) 13.5005(4)
Å. The refined composition Sc3Mg0.17(4)Cu10.5Ga7.25(4), corresponding
to a e/a ) 1.99, is close to the value (2.03) predicted from
Mg2Cu6Ga5. Meanwhile, a quenched sample of Sc15Mg5Cu47Ga33

(e/a) 2.01), in which the (Cu+ Ga) proportion had been decreased
∼5% contained a major amount of a QC phase, suggesting this
was the right direction for fine-tuning. Accordingly, the composi-
tions, now expressed in atomic percentages, were tuned with small
increments in Cu:Ga as Sc15Mg3CuyGa82-y (y ) 46.0, 47.0, 48.0,
48.5, with e/a ) 2.05, 2.03, 2.01, and 2.00, respectively). All
samples were quenched after homogenization at 800°C for 3
days.

The XRD patterns (Figure 1a) show high yields (>95%) of AC
phase at aboutz ) 46.0 and 48.5, whereas the intermediatez )
48.0 yields the QC as a line compound. All 30 peaks in this pattern
can be indexed with six integers according to Elser’s method,18

indicating a substantially pure phase. The experimental quasilattice
constant,a6 ) 4.9073(6) Å, is in excellent agreement with the value
4.9052(3) Å predicted from the AC.19 The inset in Figure 1 shows
the electron diffraction pattern of QC along the 5-fold axis. The
QC composition by EDX is Sc15.9(2)Mg1.3(2)Cu49.4(4)Ga33.4(3) (e/a)
2.00), a little Mg-poorer than that reported by Kaneko et al.10 Note
that Mg is essential for QC formation, as only the AC phase forms
in its absence (Supporting Information).

The structure of the AC, as before,7 exhibits the bcc packing of
multiply endohedral clusters, a disordered tetrahedron, a pentagonal
dodecahedron, an icosahedron, an icosidodecahedron, and a Pauling
triacontahedron from the center out (Figure 1b). The main structural
difference between the AC structures of thex ) 5 andy ) 46.0
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samples is that the occupancy of an extra 8c position in the latter
is about 16(2)% (Supporting Information). This is not changed even
by annealing for 20 days at 400°C.

LMTO-ASA calculations for the AC show widely spread s-p
orbitals of Cu and Ga and d orbitals of Sc over the valence/
conduction bands (Figure 2). A prominent feature of the DOS curves
is thatEF (e/a ) 2.00) lies on the shoulder of the pseudogap but
not the minimum (e/a ∼ 2.08). A similar feature has been found
experimentally by photoemission spectroscopy on the isostructural
ACs in the Ca-Cd system.20 From the COHP curves (Supporting
Information), Ga-Ga bonding states are optimized atEF, consistent
with the predictions based on Mg2Cu6Ga5. Besides providing
valence electrons, an important feature of Sc is, as expected, its
low-lying d orbitals aroundEF. Fatband analyses (Supporting
Information) clearly show that the formation of the pseudogap arises
from orbital mixing of Cu and Ga p with Sc d plus some small
contributions from Cu d orbitals. The p-d orbital mixing atEF

may also increase the magnitude of the pseudogap compared with
that for Mg2Cu6Ga5. The same mechanism is believed to account
for the formation of other Sc-M-Zn i-QCs mentioned above.7,9

In summary, replacement of Mg in Mg2Cu6Ga5 with the electron-
richer Sc gives strong p-d orbital mixing that enhances the depth
of the pseudogap and results in the formation of the icosahedral
QC. The achievements of electronic tuning to afford both AC and
QC phases via pseudogap and empty bonding state predictions
represent a promising route to new QCs, especially when ACs are
not already known. The surprising fact that the method works across
phase changes may result because of the similarities of the clusters
and the structures. This route closely correlates the pseudogap and
bonding with the Hume-Rothery concepts. Before these develop-
ments, the search for QC systems has relied more on Hume-
Rothery ideas, experience, and luck. Parallel tuning starting with
Na2Au6In5 and the parent Mg2Zn11 phases works well too.21
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Figure 1. (a) XRD for Sc15Mg3CuyGa82-y quenched samples;y ) 46.0
and 48.5 samples are identified as AC,y ) 48.0 as the QC, andy ) 47.0
as a mixture of QC and Sc2CuGa3. The inset and the six integers show the
ED pattern of QC along 5-fold axis and the high dimensional indices,
respectively. (b) Multiply endohedral clusters for the AC.

Figure 2. The densities-of-states (DOS) of the approximant.
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